Using Connected Vehicle Data to Reassess Dilemma Zone Performance of Heavy Vehicles

Author:

Li Howell1,Platte Tom2,Mathew Jijo1,Smith W. Benjamin2,Saldivar-Carranza Enrique1,Bullock Darcy M.1

Affiliation:

1. Purdue University, West Lafayette, IN

2. Indiana Department of Transportation, Indianapolis, IN

Abstract

The rate of fatalities at signalized intersections involving heavy vehicles is nearly five times higher than for passenger vehicles in the US. Previous studies in the US have found that heavy vehicles are twice as likely to violate a red light compared with passenger vehicles. Current technologies leverage setback detection to extend green time for a particular phase and are based upon typical deceleration rates for passenger cars. Furthermore, dilemma zone detectors are not effective when the max out time expires and forces the onset of yellow. This study proposes the use of connected vehicle (CV) technology to trigger force gap out (FGO) before a vehicle is expected to arrive within the dilemma zone limit at max out time. The method leverages position data from basic safety messages (BSMs) to map-match virtual waypoints located up to 1,050 ft in advance of the stop bar. For a 55 mph approach, field tests determined that using a 6 ft waypoint radius at 50 ft spacings would be sufficient to match 95% of BSM data within a 5% lag threshold of 0.59 s. The study estimates that FGOs reduce dilemma zone incursions by 34% for one approach and had no impact for the other. For both approaches, the total dilemma zone incursions decreased from 310 to 225. Although virtual waypoints were used for evaluating FGO, the study concludes by recommending that trajectory-based processing logic be incorporated into controllers for more robust support of dilemma zone and other emerging CV applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3