A Wrong-Way Driving Crash Risk Reduction Approach for Cost-Effective Installation of Advanced Technology Wrong-Way Driving Countermeasures

Author:

Sandt Adrian1,Al-Deek Haitham1

Affiliation:

1. Department of Civil, Environmental, and Construction Engineering, University of Central Florida (UCF), Orlando, FL

Abstract

Wrong-way driving (WWD) is hazardous on high-speed limited access facilities. Traditional signage and pavement markings will not always prevent intoxicated or confused drivers from entering these facilities the wrong way. To better alert wrong-way drivers, agencies can consider WWD countermeasures equipped with advanced technologies (including warning lights and detection devices) on exit ramps. However, these countermeasures can be expensive for agencies to install on entire roadways or corridors. This paper develops an innovative WWD crash risk (WWCR) reduction approach consisting of a WWCR segment model and an optimization algorithm that can be used to help agencies decide where to install WWD countermeasures. The approach examines segments of limited access facilities to determine the interchanges where advanced technology WWD countermeasures will provide the greatest reduction in WWCR based on an agency’s available resources. A hypothetical example application of this approach is shown for the Central Florida Expressway Authority toll road network. This example shows how the WWCR reduction approach can help agencies identify the optimal investment level and high-risk locations. It also shows how the optimization algorithm can provide significant cost savings compared with equipping entire roadway segments (57% savings) or corridors (83% savings). Agencies can customize the algorithm by adding constraints to represent various scenarios and make the algorithm applicable for networks ranging from single roadways to statewide systems. This WWCR reduction approach could be utilized by agencies nationwide to help them save resources and prioritize investment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3