Analysis of Wind Force on Cyclists From Passing Vehicles

Author:

Madkour Fatma Elzahraa1,Lowry Michael1ORCID,Abdel-Rahim Ahmed1ORCID,Hammad Ahmad2,Vibhav Durgesh2ORCID,Paulo Yu2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID

2. Department of Mechanical Engineering, University of Idaho, Moscow, ID

Abstract

Cyclists must withstand significant wind force from passing vehicles. This study analyzed the magnitude of wind force generated by different vehicle types (sports utility vehicle, pickup truck, single unit truck, and semi-trailer truck), vehicle speeds (25, 40, and 60 mph), separation distances (2 ft, 4 ft, and 6 ft), and cyclist riding positions (racing and touring). Three research methods were used: field tests in controlled and natural environments, computational fluid dynamic simulations, and scaled-model wind tunnel experiments. The analysis focused on assessing longitudinal and transverse wind forces that are directed at the cyclist in parallel and perpendicular directions, respectively. All three methods showed the expected trend—that wind force increases with an increase in vehicle muzzle bluntness, vehicle speed, and cyclist proximity. Selected measurements and various models are provided. The wind force to knock a cyclist over (i.e., the flipping moment) was calculated for each test scenario (vehicle type, speed, and separation distance) and compared with the recommended limit (17 N) found in the literature. The semi-trailer truck generated flipping moments that exceeded the limit for all scenarios except 25 mph and 6 ft separation. All the vehicles, at all the speeds tested, exceeded the limit at 2 ft separation. This novel use of simulation and wind tunnel experiments provides groundwork for future research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3