Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model

Author:

Baghbani Asiye1ORCID,Bouguila Nizar1ORCID,Patterson Zachary1ORCID

Affiliation:

1. Concordia Institute for Information Systems Engineering, Montreal, Canada

Abstract

Short-term passenger flow prediction is critical to managing real-time bus networks, responding to emergencies quickly, making crowdedness-aware route recommendations, and adjusting service schedules over time. Some recent studies have attempted to predict passenger flow using deep learning models. The complexity of transportation networks, coupled with emerging real-time data collection and information dissemination systems, has increased the popularity of these approaches. There has also been a growing interest in using a new deep learning approach, the graph neural network that captures graph dependence by passing messages between its nodes. Researchers in various transportation domains have used such tools for modeling and predicting transportation networks, as many of these networks consist of nodes and links and can be naturally categorized as graphs. This paper develops a bus network graph convolutional long short-term memory (BNG-ConvLSTM) neural network model to forecast short-term passenger flows in bus networks. Validating the proposed model is done using real-world data collected from the Laval bus network in Canada. Based on a set of comparisons between the proposed model and some other popular deep learning approaches, it clearly indicates that the BNG-ConvLSTM model is more scalable and robust than other baselines in making network-wide predictions for short-term passenger flows.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3