Use of Deep Learning to Predict Daily Usage of Bike Sharing Systems

Author:

Yang Hong1,Xie Kun2,Ozbay Kaan3,Ma Yifang4,Wang Zhenyu5

Affiliation:

1. Department of Modeling, Simulation & Visualization Engineering, Transportation Research Institute, Old Dominion University, Norfolk, VA

2. Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

3. C2SMART Center (A Tier 1 USDOT UTC), Department of Civil and Urban Engineering & Center for Urban Science and Progress (CUSP), Tandon School of Engineering, New York University (NYU), Brooklyn, NY

4. Department of Information Technology and Decision Sciences, Old Dominion University, Norfolk, VA

5. Department of Modeling, Simulation & Visualization Engineering, Old Dominion University, Norfolk, VA

Abstract

The use of bikes among stations is often spatiotemporally imbalanced, causing many problems in daily operations. Predictively knowing how the system demand evolves in advance helps improve the preparedness of operational schemes. This paper aims to present a predictive modeling approach to analyze the use of bicycles in bike sharing systems. Specifically, a deep learning (DL) approach using the convolutional neural networks (CNNs) was proposed to predict the daily bicycle pickups at both city and station levels. A numerical study using data from the Citi Bike system in New York City (NYC) was performed to assess the performance of the proposed approach. Other than the historical records, relevant information like weather was also incorporated in the modeling process. The modeling results show that the proposed approach can achieve improved predictive performance in both city- and station-level analyses, confirming the merits of the proposed method against other baseline approaches. In addition, including information from neighboring stations into the models can help improve the performance of station-level prediction. The predictive performance of the CNN was also found to be related to parameters such as temporal window, number of neighboring stations, learning ratio, patch size, and the inclusion of additional data such as drop-offs. Thus, the implementation of the proposed models requires necessary calibration to determine appropriate parameters for a given bike sharing system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3