Extensibility of a Machine Learning Model for Stormwater Basin Design and Retrofit Optimization Through a User-Friendly Web Application

Author:

Li Haochen1ORCID,Spelman David2ORCID,Sansalone John3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN

2. Department of Civil Engineering and Construction, Bradley University, Peoria, IL

3. Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL

Abstract

To sequester particulate matter (PM) and chemical loads, stormwater basins are a common infrastructure component of transportation land use systems in a planning/design or a retrofit phase. Basin design relies on residence time (RT), capacity–inflow ratio (CIR), and continuous stirred-tank reactor (CSTR) concepts to provide presumptive guidance for load reduction. For example, 14-day (or 21-day) RT is presumed to provide load reduction for total suspended solids (TSS) (e.g., commonly 80%), and for total phosphorus (TP) (e.g., commonly 60%). Despite such guidance, most existing basins are impaired—not meeting presumptive guidance, whether for TSS, nutrients, or chemicals (e.g., metals). RT guidance results in high initial basin design costs (land and construction). For impaired basin retrofit, RT guidance generates a significantly higher cost (area/volume increase), if such a retrofit is even feasible considering proximate infrastructure constraints. This study presents a computational fluid dynamics (CFD)-machine learning (ML) augmented web application, DeepXtorm, for cost–benefit optimization of basin design and retrofit. DeepXtorm is examined against basin costs from as-built data, RT, CIR, and CSTR (deployed in the Storm Water Management Model [SWMM]) over a range of load reduction levels of TSS (60%–90%) and TP (40%–60%). For a given load reduction requirement, DeepXtorm demonstrates up to an order of magnitude (or more) lower basin cost compared with RT, CIR, and CSTR models, and greater than an order of magnitude compared with as-built cost data. DeepXtorm represents a more robust and cost-effective tool for stormwater basin design and retrofit.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3