Affiliation:
1. University of Michigan Transportation Research Institute, Ann Arbor, MI
2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI
Abstract
Most of the existing connected vehicle (CV)-based traffic control models require a critical penetration rate. If the critical penetration rate cannot be reached, then data from traditional sources (e.g., loop detectors) need to be added to improve the performance. However, it can be expected that over the next 10 years or longer, the CV penetration will remain at a low level. This paper presents a real-time detector-free adaptive signal control with low penetration of CVs ([Formula: see text]10%). A probabilistic delay estimation model is proposed, which only requires a few critical CV trajectories. An adaptive signal control algorithm based on dynamic programming is implemented utilizing estimated delay to calculate the performance function. If no CV is observed during one signal cycle, historical traffic volume is used to generate signal timing plans. The proposed model is evaluated at a real-world intersection in VISSIM with different demand levels and CV penetration rates. Results show that the new model outperforms well-tuned actuated control regarding delay reduction, in all scenarios under only 10% penetrate rate. The results also suggest that the accuracy of historical traffic volume plays an important role in the performance of the algorithm.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献