Impact of Wide-Base Tires on Pavements: A National Study

Author:

Al-Qadi Imad L.1,Hernandez Jaime A.1,Gamez Angeli1,Ziyadi Mojtaba1,Gungor Osman Erman1,Kang Seunggu1

Affiliation:

1. University of Illinois at Urbana-Champaign, Illinois Center for Transportation, Rantoul, IL

Abstract

This paper summarizes a multi-year effort comparing the new-generation wide-base tires (NG-WBT) and dual-tire assembly from a holistic point of view. The tires were compared considering not only pavement damage but also environmental impact. Numerical modeling, prediction methods, experimental measurements, and life-cycle assessment were combined to provide recommendations about the use of NG-WBT. A finite element (FE) approach considering variables that are usually omitted in the conventional analysis of flexible pavement was used for modeling pavement structures combining layer thickness, material properties, tire load, tire-inflation pressure, and pavement type (interstate and low volume). A prediction tool, ICT-Wide, was developed based on an artificial neural network to obtain critical pavement responses in cases excluded from the FE analysis matrix. Based on the bottom-up fatigue cracking, permanent deformation, and international roughness index, the life-cycle energy consumption, cost, and green-house gas emissions were estimated. To make this research useful for state departments of transportation and practitioners, a modification to AASHTOware is proposed to account for NG-WBT. The revision is based on two adjustment factors, one accounting for the discrepancy between the AASHTOware approach and the FE model of this study, and the other addressing the impact of NG-WBT. Although greater pavement damage may result from NG-WBT, for the analyzed cases, the extra pavement damage may be outweighed by the environmental benefits when NG-WBT market penetration is considered.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3