Bayesian Nonparametric Approach to Average Annual Daily Traffic Estimation for Bridges

Author:

Ashley Grace1,Attoh-Okine Nii1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE

Abstract

Every year, the U.S. government provides several billions of dollars in the form of federal funding for transportation services in the U.S.A. Decision making with regard to the use of these funds largely depends on performance indicators like average annual daily traffic (AADT). In this paper, Bayesian nonparametric models are developed through machine learning for the estimation of AADT on bridges. The effect of hyperparameter choice on the accuracy of estimations produced by Bayesian nonparametric models is also assessed. The predictions produced using the Bayesian nonparametric approach are then compared with predictions from a popular Frequentist approach for the selected bridges. Evaluation metrics like the mean absolute percentage error are subsequently employed in model evaluation. Based on the results, the best methods for AADT forecasting for the selected bridges are recommended.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3