Full-Scale Evaluation of Electrically Conductive Asphalt Pavements for Deicing Applications

Author:

Marath Ashith1ORCID,Ali Ayman1ORCID,Saidi Ahmed1,Mehta Yusuf1ORCID,Elshaer Mohamed2,Decarlo Christopher3ORCID

Affiliation:

1. Center for Research and Education in Advanced Transportation Engineering Systems, Rowan University, Glassboro, NJ

2. US Army Corps of Engineers, Engineering Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH

3. US Aggregates, Indianapolis, IN

Abstract

Electrically heated pavements are an emerging technology for deicing applications in cold regions. Such pavements usually contain a conductive layer (asphalt or concrete) and electrodes to transmit electricity through the pavement, thus heating it. The goal of this study was to evaluate the heating ability of electrically conductive pavement structures under cold weather conditions. To achieve this goal, three full-scale pavement strips were constructed at Rowan University. Test strip I was a conventional pavement strip without any heating elements, whereas test strips II and III had conductive asphalt layer sandwiched between base and asphalt surface courses. The conductive layer in test strip II consisted of a mixture of asphalt binder and conductive fibers, whereas test strip III contained a modified high-performance thin overlay (HPTO) mixture with graphite and carbon fibers. To provide electric potential across the conductive layers, steel electrodes with different spacings (6 in. and 12 in.) were installed at the bottom of the conductive layers of test strips II and III, and connected to a 24V AC power source. Electrical data showed that test strip II had a power consumption of 19.75 W/ft2, which was nearly four times higher than test strip III. Thermal data showed that the surface temperature of test strip III with 6 in. electrode spacing increased above freezing point with nearly 50% less power consumption than test strip II. Further, electrodes with 6 in. spacing resulted in the highest increase of pavement surface temperature, which was 3°F higher than electrodes with 12 in. spacing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference19 articles.

1. Impacts of de-icing salt pollution on urban road greenspace: a case study of Beijing

2. Yehia S. A., Tuan C. Y. Bridge Deck Deicing. Crossroads 2000 Conference, Iowa State University, Ames, Iowa, 1998, pp. 51–57. https://digitalcommons.unomaha.edu/civilengfacproc/1.

3. Influence of de-icing agents on the viscoelastic properties of asphalt mastics

4. Performance Deterioration of Asphalt Mixture under Chloride Salt Erosion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3