Snow Detection using In-Vehicle Video Camera with Texture-Based Image Features Utilizing K-Nearest Neighbor, Support Vector Machine, and Random Forest

Author:

Khan Md Nasim1,Ahmed Mohamed M.1

Affiliation:

1. Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY

Abstract

Snowfall negatively affects pavement and visibility conditions, making it one of the major causes of motor vehicle crashes in winter weather. Therefore, providing drivers with real-time roadway weather information during adverse weather is crucial for safe driving. Although road weather stations can provide weather information, these stations are expensive and often do not represent real-time trajectory-level weather information. The main motivation of this study was to develop an affordable in-vehicle snow detection system which can provide trajectory-level weather information in real time. The system utilized SHRP2 Naturalistic Driving Study video data and was based on machine learning techniques. To train the snow detection models, two texture-based image features including gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), and three classification algorithms: support vector machine (SVM), k-nearest neighbor (K-NN), and random forest (RF) were used. The analysis was done on an image dataset consisting of three weather conditions: clear, light snow, and heavy snow. While the highest overall prediction accuracy of the models based on the GLCM features was found to be around 86%, the models considering the LBP based features provided a much higher prediction accuracy of 96%. The snow detection system proposed in this study is cost effective, does not require a lot of technical support, and only needs a single video camera. With the advances in smartphone cameras, simple mobile apps with proper data connectivity can effectively be used to detect roadway weather conditions in real time with reasonable accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules;Applied Energy;2024-12

2. A Survey on Vehicle Detection, Counting, and Classification;Lecture Notes in Networks and Systems;2024

3. Camera-Based Road Snow Coverage Estimation;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. 3-GWD : A Textural and AI-Based Approach for Real-Time Detection of Weather Disturbances Applied to Autonomous Vehicle;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. Roadway Snow Detection Using Dual-Spectrum Camera Images and Computer Vision;Transportation Research Record: Journal of the Transportation Research Board;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3