Driving Simulator Trajectory-Level Analysis of Truck Drivers’ Behavioral Alteration in Connected Vehicles Environment Under Fog with Complex Roadway Geometry

Author:

Khoda Bakhshi Arash1ORCID,Ahmed Mohamed M.1ORCID

Affiliation:

1. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY

Abstract

Foggy weather increases crash likelihood when coinciding with roadway geometry changes inconsistent with drivers’ expectations. The situation might be exacerbated for heavy trucks having to evade critical safety events because of the vehicles’ maneuverability limitations, imposing prime safety challenges on major freight corridors like Interstate-80 (I-80) in the U.S. Aligned with the connected vehicle (CV) pilot program on I-80 in Wyoming, this study intends to unveil how CV technology alleviates safety concerns in this regard. To this aim, a with/without analysis approach was performed utilizing a high-fidelity truck driving simulator. Twenty-three professional truck drivers were recruited to drive the simulator in CV scenario with traveler information messages, including foggy weather ahead and an advisory speed of 45 mph, and in a non-CV counterpart without notifications. Longitudinal and lateral drivers’ behaviors were quantified by kinematic-based surrogate measures of safety (K-SMoS) characterized on vehicles’ trajectory, including longitudinal speed, lateral speed, steering, their corresponding spatial standard deviations, and the coefficient of variation of longitudinal speed. The central tendency and dispersion of K-SMoS distributions were compared between CVs and non-CVs throughout the simulated roadway. Results showed immediate truck drivers’ compliance to CV notifications, which was more apparent in their longitudinal driving behaviors. On a horizontal curve with poor visibility, statistically significant reductions in central tendency and dispersion of K-SMoS distributions up to 67% in CVs were observed, minimizing the crash risk in CV environments. Besides, findings revealed that exposure to the CV notifications minimized drivers’ behavior uncertainty, manifesting in their improved situational awareness and enhancing the safety performance of the traffic stream.

Funder

Federal Highway Administration

Wyoming Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3