Severity Analysis of Secondary Crashes on High-Speed Roadways: Pattern Recognition Using Association Rule Mining

Author:

Hossain Md Mahmud1ORCID,Abbaszadeh Lima Mohammad Reza1ORCID,Zhou Huaguo1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Auburn University, Auburn, AL

Abstract

Secondary crashes (SCs) are a major concern, posing additional safety threats to both non-involved vehicles and incident responders. The objective of this study was to identify the affiliated factors contributing to SCs on roadways with a speed limit of 55 mph or above. Traditional police-investigated crash dataset was analyzed, spanning more than four years (January 2016–February 2020) for the entire state of Alabama. As the crash database did not directly include information on SCs and did not allow for linking a primary crash with a subsequent SC, a data extraction process was developed to identify SCs and understand their characteristics. Association rule mining (ARM) was applied to identify crash patterns based on maximum injury severity levels. The generated rules were filtered based on support, confidence, and lift, and then validated by the lift increase criterion. The results revealed complex relationships between risk factors and severity of SCs. In relation to SCs with injuries, single-vehicle crashes were frequently observed during peak hours and when drivers swerved to avoid objects/persons/vehicles. In contrast, concerning SCs with possible/no injuries, single-vehicle collisions were more likely to occur when drivers failed to notice objects/persons/vehicles and were involved in speeding. On urban interstates, single-vehicle SCs were frequently associated with injuries, while rear-end SCs were often linked to possible/no injuries. The findings of this study can be helpful in enhancing existing traffic incident management programs to mitigate the occurrence of SCs.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3