Lane Detection and Lane-Changing Identification with High-Resolution Data from a Swarm of Drones

Author:

Barmpounakis Emmanouil1,Sauvin Guillaume M.1,Geroliminis Nikolaos1

Affiliation:

1. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract

In the era of big data, new transportation-related concepts and methodologies need to be proposed to understand how congestion propagates. pNEUMA, a unique dataset that was acquired during a first-of-its-kind experiment using a swarm of drones over a dense city center, has uncovered new opportunities for revisiting and evaluating existing concepts, and new ways to describe significant traffic-related phenomena. This dataset is part of an open science initiative shared with the research community and consists of more than half a million detailed trajectories of almost every vehicle that was present in the study area. The aim of this paper is to describe the first methodological approach to how such information can be utilized to extract lane-specific information from this new kind of data and set the benchmark for possible future approaches. Specifically, we describe the methodological framework of two related algorithms: lane detection and lane-changing maneuver identification. Azimuth was the main concept utilized in this methodological framework to overcome existing issues in the literature related to identifying lane-changing maneuvers. The combination of high-quality data, clustering techniques, and detailed spatial information in the lane-detection algorithm indicated it was an effective tool without the need for complex computational effort. Moreover, high-resolution data together with modern time-series analysis tools for lane-changing identification, showed that high-accuracy predictive algorithms can be obtained. The accuracy of both tools was over 95%. Challenging scenarios are identified for future studies and to further improve the tools.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of smart technologies in safety of vulnerable road users: A review;International Journal of Transportation Science and Technology;2024-07

2. Current Approaches in Traffic Lane Detection: a minireview;The Archives of Automotive Engineering – Archiwum Motoryzacji;2024-06-26

3. Detection of Driver Styles in Lane Changes using Wavelet Transform;JUCS - Journal of Universal Computer Science;2024-05-28

4. Fourier neural operator for learning solutions to macroscopic traffic flow models: Application to the forward and inverse problems;Transportation Research Part C: Emerging Technologies;2024-03

5. A behaviourally underpinned approach for two-dimensional vehicular trajectory reconstruction with constrained optimal control;Transportation Research Part C: Emerging Technologies;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3