Affiliation:
1. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC
Abstract
This paper develops a truck appointment system (TAS) considering variability in turn time at the container terminals. The consideration of this operational characteristic is crucial for optimal drayage scheduling. The TAS is formulated as a stochastic model and solved using the sample averaging approximation (SAA) algorithm. Using turn time distributions obtained from actual data from a U.S. port, a series of experiments is designed to evaluate the effectiveness of the proposed stochastic TAS model compared with the deterministic version where an average turn time is used instead of a distribution. Results of the numerical experiment demonstrate the benefit of the stochastic TAS model given that its drayage cost error was 3.9% lower compared with the deterministic TAS model. This result implies that the schedules produced by the stochastic TAS model are more robust and are able to accommodate a wider range of turn time scenarios. Another key takeaway from the experiment results is that the stochastic TAS model is more beneficial to utilize when the ratio of quotas to requested appointments is lower. Thus, in practice, when this ratio is more likely to be on the lower end, drayage companies would benefit more if the appointment schedule adopts the stochastic approach described in this paper.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献