Interpretable Machine Learning Approach to Predicting Electric Vehicle Buying Decisions

Author:

Naseri Hamed1,Waygood E.O.D.1ORCID,Wang Bobin2ORCID,Patterson Zachary3ORCID

Affiliation:

1. Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montreal, Québec, Canada

2. Department of Mechanical Engineering, Université Laval, Québec City, Québec, Canada

3. Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Québec, Canada

Abstract

To address the problem of climate change emissions from the transport sector, many countries are promoting electric vehicles (EVs). To support such efforts, it is essential to know what influences the choice of an EV over a traditional internal combustion engine vehicle (ICEV). To study this, a discrete choice experiment was developed, and 2,015 valid responses were gathered from Canadian adults with a driver’s license. In place of a more traditional analysis, a machine learning approach, XGBoost, was applied. However, two key issues were addressed with respect to its application. First, a practical question related to how best to split the training and testing data was examined. A new technique based on the Coyote optimization algorithm (COA) is developed that automatically determines the split that leads to the greatest prediction accuracy. The policy-relevant results of the analysis found that an individual’s Climate Change-Stage of Change (CC-SoC) and the price ratio of EVs to ICEVs are the most important direct influences. The interaction effect of the first two (CC-SoC and price ratio) is also influential. However, this leads to the second key issue: interpretability. Although high prediction accuracy (87.1%) was achieved, the black-box nature of the approach limits its policy relevance. As such, this research applied a technique, Accumulated Local Effects (ALE), that can determine the strength and direction of influence of the variable. This research demonstrates how machine learning can be applied to a policy-relevant question and provide information that is useful to policy decision makers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3