Cooperative Adaptive Cruise Control for a Platoon of Connected and Autonomous Vehicles considering Dynamic Information Flow Topology

Author:

Gong Siyuan1,Zhou Anye2,Peeta Srinivas2

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an, Shannxi, China

2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Abstract

Vehicle-to-vehicle communications can be unreliable as interference causes communication failures. Thereby, the information flow topology (IFT) for a platoon of connected autonomous vehicles (CAVs) can vary dynamically. This limits existing cooperative adaptive cruise control (CACC) strategies as most of them assume a fixed IFT. To address this problem, a CACC scheme is introduced that considers a dynamic information flow topology (CACC-DIFT) for CAV platoons. An adaptive proportional-derivative (PD) controller under a two-predecessor-following IFT is proposed to attenuate the negative effects when communication failures occur. The parameters of the PD controller are determined to ensure the string stability of the platoon. Furthermore, the proposed PD controller also factors the performance of individual vehicles. Hence, when communication failure occurs, the system will switch to a certain type of CACC instead of degenerating to adaptive cruise control, which improves the platoon control performance considerably. The effectiveness of the proposed CACC-DIFT is validated through numerical experiments based on Next Generation Simulation (NGSIM) field data. Simulation results indicate that the proposed CACC-DIFT design outperforms CACC based on a predetermined information flow topology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3