Measuring and Modeling Emission Effects for Toll Facilities

Author:

Coelho Margarida C.12,Farias Tiago L.13,Rouphail Nagui M.4

Affiliation:

1. Department of Mechanical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.

2. Department of Mechanical Engineering, University of Aveiro, University Campus of Santiago, 3810-193, Aveiro, Portugal.

3. Department of Mechanical Engineering, Superior Institute Technician, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.

4. North Carolina State University, Campus Box 8601, Raleigh, NC 27695-8601.

Abstract

At conventional pay tolls, vehicles joining a queue must come to a stop and undergo several stop-and-go cycles until payment is completed. As a result, emissions increase because of excessive delays, queuing, and speed change cycles for approaching traffic. The main objective of this research is to quantify traffic and emission impacts of toll facilities in urban corridors. As a result of experimental measurements of traffic and emissions, the impact of traffic and emission performance of conventional and electronic toll facilities is presented. The approach attempts to explain the interaction between toll system operational variables (traffic demand, service time, and service type) and system performance variables (stops, queue length, and emissions). The experimental data for validating the numerical traffic model were gathered on pay tolls located in three main corridors that access the city of Lisbon, Portugal. The emissions model is based on real-world onboard measurements of vehicle emissions. With the appropriate speed profiles of vehicles in pay tolls, onboard emission measurements were carried out to quantify the relationships between vehicle dynamics and emissions. The main conclusion of this work is that there are two different types of stop-and-go driving cycles for vehicles joining the queue at a conventional toll booth: short and long. The length of each cycle depends on the expected queue length at the toll booth and the frequency of each cycle directly affects the level of vehicle emissions. The greatest percentage of emissions for a vehicle that stops at a pay toll is due to its final acceleration back to cruise speed after leaving the pay toll.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3