Evaluation of Airport Size and Delay Causal Factor Effects on Delay Propagation Dissipation

Author:

Atallah Stephanie1,Hotle Susan2ORCID

Affiliation:

1. Aviation Consultant, WSP USA, St. Louis, MO

2. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

The International Civil Aviation Organization identifies departure and arrival punctuality as on-time key performance indicators. However, these metrics assume a flight’s delay is a result of either the origin or destination airport, providing limited information on where delay should be mitigated in the U.S. National Airspace System (NAS). This study evaluates the relationship between delay propagation magnitude, delay causal factor, airport size, and charged facility (airport or Air Route Traffic Control Center), to examine if certain delays take longer to dissipate. First, using flights from July 2018, results show that most delay propagation chains originate at large-hub airports. However, these delays were the quickest to recover. Second, this study presents a regression model, predicting total propagated delay using fixed effects based on the weather region where the original delay occurred. Each additional flight affected by downstream delay adds 18.7 min on average to total arrival delay in a propagation chain. Additionally, if weather was the original causal factor, total propagated delay increased by 11.6 min compared with non-weather delays. Lastly, this study compares delay propagation in July 2018 and July 2020. Results show uneven impacts of the coronavirus disease 2019 (COVID-19) across the large-hub airports. Some of the investigated airports did not witness large improvements in average delay per delayed flight, warranting further research in the future. While delay and delay propagation have not been completely eradicated in the NAS during the COVID-19 pandemic, findings suggest that both have significantly declined on average.

Funder

Federal Aviation Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impacts of COVID-19 on Air Traffic Control and Air Traffic Management: A Review;Sustainability;2024-08-04

2. Development and Performance Evaluation of a Computer-Aided Decision-Making System for Air Traffic Control;Proceedings of the 2024 Asia Pacific Conference on Computing Technologies, Communications and Networking;2024-07-26

3. Modeling Delay Propagation in Airport Networks via Causal Biased Random Walk;IEEE Transactions on Intelligent Transportation Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3