Impact of Recycled Materials and Recycling Agents on Asphalt Binder Oxidative Aging Predictions

Author:

Pournoman Sara1,Hajj Elie Y.2,Morian Nathan3,Martin Amy Epps4

Affiliation:

1. Dynatest North America Inc., Ventura, CA

2. Department of Civil and Environmental Engineering, University of Nevada, Reno, NV

3. Nevada Department of Transportation, Carson City, NV

4. Department of Civil Engineering, Texas A&M University, College Station, TX

Abstract

The overall objective of this study was to evaluate the influence of selected recycling agents (RAs) and recycled materials on the development of cracking potential with respect to oxidative aging. Given the complex nature of varying base asphalt binders, recycled materials, whether recycled asphalt pavement (RAP), reclaimed asphalt shingles (RAS), or both, and the complexity of their combined interactions with recycling agents, standard evaluation protocols for binder grading and evaluation may be insufficient. The binder blend aging predictions or oxidation modeling evaluation was introduced as a means to evaluate the combined influence of both binder oxidation kinetics and resulting rheological changes on the measured cracking potential of the various binder blends—that is, Glover–Rowe (G-R) parameter—driven by temperature estimation modeling over simulated in-service durations at example geographic locations. This evaluation has demonstrated the importance of adequate characterization of the specific materials being used in conjunction with selection of the correct dose of the appropriate recycling agent to ensure sufficient resistance to cracking and embrittlement of proposed material combinations. The combined influence of all the interested components did not always add up to the sum of the individual parts, nor are the measured interactions consistent with increased levels of oxidation. Therefore, the prevailing conclusion of the study as a whole indicated that material-specific evaluations are needed to identify the complex interactions taking place within the material combinations of interest, but also multiple levels of aging at appropriate intervals may be necessary for comprehensive characterization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3