Time-Constrained Capacitated Vehicle Routing Problem in Urban E-Commerce Delivery

Author:

Cokyasar Taner12ORCID,Subramanyam Anirudh1ORCID,Larson Jeffrey1ORCID,Stinson Monique1ORCID,Sahin Olcay1ORCID

Affiliation:

1. Argonne National Laboratory, Lemont, IL

2. Tarsus University, Mersin, Turkey

Abstract

Electric vehicle routing problems can be particularly complex when recharging must be performed mid-route. In some applications, such as e-commerce parcel delivery truck routing, however, mid-route recharging may not be necessary because of constraints on vehicle capacities and the maximum allowed time for delivery. In this study, we develop a mixed-integer optimization model that exactly solves such a time-constrained capacitated vehicle routing problem, especially of interest for e-commerce parcel delivery vehicles. We compare our solution method with an existing metaheuristic and carry out exhaustive case studies considering four U.S. cities—Austin, TX; Bloomington, IL; Chicago, IL; and Detroit, MI—and two vehicle types: conventional vehicles and battery electric vehicles (BEVs). In these studies we examine the impact of vehicle capacity, maximum allowed travel time, service time (dwelling time to physically deliver the parcel), and BEV range on system-level performance metrics, including vehicle miles traveled (VMT). We find that the service time followed by the vehicle capacity plays a key role in the performance of our approach. We assume an 80-mi BEV range as a baseline without mid-route recharging. Our results show that the BEV range has a minimal impact on performance metrics because the VMT per vehicle averages around 72 mi. In a case study for shared-economy parcel deliveries, we observe that VMT could be reduced by 38.8% in Austin if service providers were to operate their distribution centers jointly.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3