Impacts of Connected and Autonomous Vehicles on Traffic Flow with Heterogeneous Drivers Spatially Distributed over Large-Scale Networks

Author:

Fakhrmoosavi Fatemeh1,Saedi Ramin1,Zockaie Ali1,Talebpour Alireza2

Affiliation:

1. Michigan State University, East Lansing, MI

2. Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL

Abstract

Connected and automated vehicle technologies are expected to significantly contribute in improving mobility and safety. As connected and autonomous vehicles have not been used in practice at large scale, there are still some uncertainties in relation to their applications. Therefore, researchers utilize traffic simulation tools to model the presence of these vehicles. There are several studies on the impacts of vehicle connectivity and automation at the segment level. However, only a few studies have investigated these impacts on traffic flow at the network level. Most of these studies consider a uniform distribution of connected or autonomous vehicles over the network. They also fail to consider the interactions between heterogeneous drivers, with and without connectivity, and autonomous vehicles at the network level. Therefore, this study aims to realistically observe the impacts of these emerging technologies on traffic flow at the network level by incorporating adaptive fundamental diagrams in a mesoscopic simulation tool. The adaptive fundamental diagram concept considers spatially and temporally varying distributions of different vehicle types with heterogeneous drivers. Furthermore, this study considers the intersection capacity variations and fundamental diagram adjustments for arterial links resulting from the presence of different vehicle types and driver classes. The proposed methodology is applied to a large-scale network of Chicago. The results compare network fundamental diagrams and hysteresis loop areas for different proportions of connected and autonomous vehicles. In addition to quantifying impacts of connected and autonomous vehicles, the results demonstrate the impacts of various factors associated with these vehicles on traffic flow at the network level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference39 articles.

1. Talebpour A., Mahmassani H. S. Influence of Autonomous and Connected Vehicles on Stability of Traffic Flow. Presented at 94th Annual Meeting of the Transportation Research Board, Washington, D.C., 2015.

2. Comparison of Simulation-Based Dynamic Traffic Assignment Tools for Operations Management

3. Dynamics of Urban Network Traffic flow during a Large-Scale Evacuation

4. Influence of connected and autonomous vehicles on traffic flow stability and throughput

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3