Dimensionality Reduction to Reveal Urban Truck Driver Activity Patterns

Author:

Lu Fangping1,Zhao Fang2,Cheah Lynette1

Affiliation:

1. Engineering Systems & Design, Singapore University of Technology and Design, Singapore

2. Singapore-MIT Alliance for Research and Technology, Singapore

Abstract

This paper studies the activity profiles of truck drivers in urban areas. Finding repeating dynamical patterns is important in understanding freight behaviors, and aids freight-friendly planning. In the digital age, data on truck drivers is becoming more available with heterogeneous demographic and work profiles. By synthesizing such pervasive data and applying machine learning concepts, this paper proposes to identify signature travel activity patterns via dimensionality reduction. Based on driver survey data, truck drivers’ behaviors are represented as longitudinal activity sequences. Dimensionality reduction and activity reconstruction via principal components analysis (PCA), logistic PCA, and autoencoder were conducted to reveal fundamental activity features and approximate the underlying data-generating function. In the driver survey dataset, 243 truck drivers in Singapore reported their daily activities for 1,099 weekdays. This study found that PCA produced the most faithful reconstruction of drivers’ activities. When projecting the input data down from 2,592 to 82 dimensions, PCA explained 77% of variances with a reconstruction error of 0.99%. Logistic PCA is a useful extension of PCA to study the pattern of a single activity. It captures the variation of infrequent activities such as truck queuing, which PCA fails to reconstruct. Autoencoder was found to be more powerful than PCA in reconstructing activities – with 1% of original dimensions, it reconstructed the activities with an error rate of 1.24%. Moreover, when implemented as a variational autoencoder, autoencoder generated realistic-looking samples of driver activities. The top three most distinctive activity patterns of Singapore truck drivers are reported using PCA.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3