Enhancing Resiliency and Delivery of Bridge Elements using Ultra-High Performance Concrete as Formwork

Author:

Azizinamini Atorod1,Rehmat Sheharyar2,Sadeghnejad Amir2

Affiliation:

1. Accelerated Bridge Construction University Transportation Center, Department of Civil and Environmental Engineering, Florida International University, Miami, FL

2. Department of Civil and Environmental Engineering, Florida International University, Miami, FL

Abstract

A feasibility study of the use of ultra-high performance concrete (UHPC) shell as a formwork is presented. The core concept of the research, developed by the first author, is prefabrication of UHPC shell which acts as a stay-in-place formwork. In the proposed approach, after transporting the UHPC shell to site, the construction of structural elements is completed by placing reinforcing cage inside the UHPC shell and post-pouring with normal concrete. The superior properties of UHPC provide excellent means to enhance the service life of bridge elements, while eliminating the need for assembling or stripping of formwork. As a proof of concept, a combination of experimental and numerical studies was conducted, results of which are reported here. Before conducting experimental work, numerical study in the form of finite element analysis was carried out to investigate performance of shell during placement of the normal concrete. To provide a baseline comparison between UHPC shell formwork and conventional methods, two test specimens were constructed and tested under three-point load setup. The shell test specimen demonstrated flexural strength, 14% greater than an equivalent normal strength concrete specimen. The UHPC shell test specimen failure occurred by debonding of shell at the interface and development of a large crack in the shell. The shell test specimen exhibited improved levels of ductility before failure. The preliminary analysis demonstrated that the idea is feasible and useful for accelerated bridge construction applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3