Proposed Changes to Asphalt Binder Specifications to Address Binder Quality-Related Thermally Induced Surface Damage

Author:

Elwardany Michael D.1ORCID,Planche Jean-Pascal1ORCID,King Gayle2

Affiliation:

1. Asphalt & Petroleum Technologies, Western Research Institute, Laramie, WY

2. GHK, Inc., Galveston, TX

Abstract

Superpave specifications address binder properties that may lead to rutting, transverse cracking, and fatigue damage with varying degrees of success. However, asphalt binder production and formulation has significantly changed and introduced much more variability in relation to quality since the development of the Superpave Performance-Grade system because of economic, technical, and environmental reasons. Consequently, aged-induced surface distresses under combined thermal and traffic loading have become the main challenge for highway agencies. Thermally induced surface deterioration appears in the form of traditional transverse cracking, block cracking, and raveling, or accelerating damage at construction joints. This study evaluated the limitations of the proposed linear viscoelastic (LVE) rheological cracking surrogates, such as ΔTc, R-value, and G-R parameters, and the ability of the Asphalt Binder Cracking Device (ABCD) failure test to overcome these limitations. ABCD is particularly appropriate to rank binder performance because the measured cracking temperature (Tcr) encompasses binder LVE properties, failure strength, coefficient of thermal contraction, and cooling rate. The proposed parameter (ΔTf = Tc(S = 300 MPa) from BBR—Tcr from ABCD) relates the failure temperature to the equi-stiffness temperature and gives credit to well-formulated and compatible polymer-modified binders expected to increase binder strength and strain tolerance. This paper proposes a specification framework based on both ΔTc and ΔTf, universally applicable, regardless of binder composition. Additionally, preliminary purchase specification limits for binders used in surface layers are proposed based on the analysis of 44 binders, 15 with corresponding field performance data. Obviously, as confirmed by a recent stakeholder workshop and industry feedback, these preliminary specification limits need further validation and possible adjustments to account for regional experience and local challenges.

Funder

Transportation Research Board

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3