Examining Freeway Bottleneck Features During a Mass Evacuation

Author:

Staes Brian M.1,Bertini Robert L.1,Menon Nikhil2,Yuksel Eren2

Affiliation:

1. Department of Civil and Construction Engineering, Oregon State University, Corvallis, OR

2. Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL

Abstract

Traffic features were investigated for a bottleneck that was observed on a 30 mi northbound section of Florida’s Turnpike (SR-91) during the mass evacuation in advance of Hurricane Irma that occurred in September 2017. Radar detector data (at 1 min intervals) from the Regional Integrated Transportation Information System were utilized to determine the periods when a bottleneck was active adjacent to a service plaza along the roadway. Three distinct time periods were identified during which a bottleneck was active at the service plaza off-ramp, for a total of 27.5 h during the evacuation period. To identify and confirm each bottleneck activation and duration, and to measure the traffic flow features that characterized the bottleneck, curves of cumulative vehicle count and occupancy were utilized. Analysis of these curves revealed time periods during which excess vehicle accumulation and delay occurred between successive detector stations along the Turnpike. Results demonstrate distinct queued and free flowing traffic states between adjacent detectors in the vicinity of an off-ramp into a service plaza. The apparent bottleneck discharge features presented substantially lower flows than what would be expected for a limited access facility with high operational speeds. Findings from this paper present important considerations for evacuation planning and modeling as roadway traffic features may only present themselves during evacuations and if not accounted for may drastically reduce the precision of models and simulations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Length-Based Cell-State Framework Toward the Re-Creation of Large-Scale Dense Congestion Patterns;Transportation Research Record: Journal of the Transportation Research Board;2024-04-25

2. Identifying critical corridors during an area-wide disruption by evaluating network bottleneck capacity;International Journal of Disaster Risk Reduction;2021-10

3. Analyzing transportation network performance during emergency evacuations: Evidence from Hurricane Irma;Transportation Research Part D: Transport and Environment;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3