Clustering-Based Travel Pattern for Individual Travel Prediction of Frequent Passengers by Using Transit Smart Card

Author:

Ye Pengyao1,Ma Yiqing1

Affiliation:

1. National United Engineering Laboratory of Integrated and Intelligent Transportation, School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan, China

Abstract

Individual travel prediction is very important for the construction of intelligent urban transportation systems. Previous studies mainly focus on the improvement of algorithms, but pay little attention to the mining of data information. In this paper, the concept of the travel pattern is introduced into the field of individual travel prediction of frequent bus passengers. The travel pattern of passengers refers to the trip with similar boarding time and similar boarding and alighting stations of the same person. Through clustering the travel pattern by DBSCAN algorithm, the regularity of passenger travel can be better exploited and travel information can be integrated into a unified unit as well. In the process of prediction, we first predict whether the passenger will travel, and then, if so, predict the probability distribution of the next trip conditional on the previous one. The proposed method is tested using the Automatic Fare Collection data of Chengdu’s frequent bus passengers in May 2019. Based on travel pattern, the average accuracy of travel information prediction is about 41%, which is 13% higher than the method without using travel pattern. Furthermore, this paper also discusses the influence of spatial threshold in clustering on the prediction results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3