Performance Evaluation of Sensor- and Image-Based Technologies for Automated Pavement Condition Surveys

Author:

Capuruço Renato A. C.1,Tighe Susan L.1,Ningyuan Li2,Kazmierowski Tom2

Affiliation:

1. Department of Civil Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

2. Ministry of Transportation of Ontario, 1201 Wilson Avenue, Downsview, Ontario 3M3 1J8, Canada.

Abstract

Even though companies that assess pavement condition compete to innovate by providing better software for automatic analysis and diagnosis, the industry as a whole remains limited, and data collection and storage methods are disparate. In fact, software and handling procedures are proprietary—each vendor has its own automated technology to detect, classify, and quantify surface distresses. In a research effort sponsored by the Ministry of Transportation of Ontario, Canada, the performance of sensor- and image-based pavement condition assessment was compared. First, a data management plan was created to allow efficient data manipulation. Second, a suitable set of similar distresses was selected as response variables of interest to design and conduct statistical experiments. Third, advanced analysis of variance was performed to allow statistical data comparisons among companies and among automated technologies. Finally, results were discussed and recommendations made. Overall, service provider measurements using sensor-based equipment showed no significant differences; however, those taken with digital image technology did. The implications of such outcomes, including implementation details to encourage practitioners to benefit from these preliminary results, are discussed. More broadly, road agencies are given an opportunity to revisit selection decisions concerning the acceptance or rejection of pavement data collected by a range of contractors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SMART quality control analysis of pavement condition data for pavement management applications;International Journal of Transportation Science and Technology;2024-06

2. Investigation of the Data Variability of Network-Level Pavement Condition Data;Transportation Research Record: Journal of the Transportation Research Board;2024-04-25

3. Multiscale Crack Fundamental Element Model for Real-World Pavement Crack Classification;Journal of Computing in Civil Engineering;2014-07

4. Methodology to Evaluate Quality of Pavement Surface Distress Data Collected by Automated Techniques;Transportation Research Record: Journal of the Transportation Research Board;2009-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3