Multiscale Modeling of Asphalt Concrete and Validation through Instrumented Pavement Section

Author:

Khan Zafrul H.1,Tarefder Rafiqul A.1,Faisal Hasan M.2

Affiliation:

1. Civil Engineering Department, University of New Mexico, New Mexico, NM

2. Product Specialist, Rheology and Nano Surface Material Characterization, Anton Paar USA, Inc., Torrance, CA

Abstract

In this study, macroscale responses of asphalt concrete (AC) are predicted from the responses of its corresponding microscale representative volume element (RVE) within a finite element framework using quasi-static and dynamic analyses. Nanoindentation test was performed on the mastic and aggregate phase of an AC sample to determine the viscoelastic and elastic properties of RVE elements. Aggregate-mastic proportions in the RVE were obtained from the morphological image analysis. Macroscale model responses were compared with the AC pavement responses obtained from an instrumented pavement section subjected to falling weight deflectometer loading and a class 9 vehicle. Model responses are very close to the actual responses. The multiscale analyses show that tensile strain in microscale RVE is 5–10 times higher than that in a macroscale element. Furthermore, multiscale analyses also show that variations in the microscale RVE, such as the reduction in the aggregate-mastic ratio or increment in the voids, can increase the maximum tensile strain at the bottom of the AC in macroscale model by around 25%.

Funder

new mexico department of transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3