Compositional analysis of bio-oils from hydrothermal liquefaction of tobacco residues using two-dimensional gas chromatography and time-of-flight mass spectrometry

Author:

Phromphithak Sanphawat12,Onsree Thossaporn2,Saengsuriwong Ruetai12,Tippayawong Nakorn2ORCID

Affiliation:

1. Graduate Program in Energy Engineering, Faculty of Engineering, Chiang Mai University, Thailand

2. Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Thailand

Abstract

Sustainable energy from biomass is one of the most promising alternative energy sources and is expected to partially replace fossil fuels. Tobacco industries have normally rid their processing residues by landfilling or incineration, affecting the environment negatively. These residues can be used to either extract high-value chemicals or generate bio-energy via hydrothermal liquefaction. The main liquid product or bio-oil consists of highly complicated chemicals. In this work, the bio-oil from hydrothermal liquefaction of tobacco processing residues was generated in a batch reactor at biomass-to-deionized water ratio of 1:3, temperature of 310°C, and 15 min residence time, yielding the maximum liquid products for more than 50% w/w. The liquid products were analyzed, using two-dimensional gas chromatography and time-of-flight mass spectrometry (GC × GC/TOF MS). This technique allowed for a highly efficient detection of numerous compounds. From the results, it was found that hydrothermal liquefaction can cleave biopolymers (cellulose, hemicellulose, and lignin) in tobacco residues successfully. The hydrothermal liquefaction liquid products can be separated into heavy organic, light organic, and aqueous phase fractions. By GC × GC/TOF MS, the biopolymers disintegrated into low molecular weight compounds and classified by their chemical derivatives and functional groups could be detected. The major chemical derivative/functional groups found were cyclic ketones and phenols for heavy organic and light organic, and carboxylic acids and N-containing compounds for the aqueous phase. Additionally, by the major compounds found in this work, simple pathway reactions occurring in the hydrothermal liquefaction reaction were proposed, leading to a better understanding of the hydrothermal liquefaction process for tobacco residues.

Funder

Thailand Science, Research & Innovation (TSRI) office

Chiang Mai University

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3