Affiliation:
1. Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, China
2. Engineering Research Center of Advanced Manufacturing Technology for Aero Engine, Ministry of Education, Northwestern Polytechnical University, Xi’an, China
Abstract
Carbon fiber–reinforced carbon matrix composites have been widely used for the manufacturing of thermostructural parts for several industries such as the aerospace and automotive. Drilling is an extremely common method used in the machining of carbon fiber–reinforced carbon matrix composites before assembly. However, their non-homogeneous, anisotropic, and brittle nature make difficult to guarantee the hole quality in drilling. Some severe drilling defects, such as burrs, delamination, and tear, usually occur. In this regard, it is necessary to accurately predict the thrust force in drilling of carbon fiber–reinforced carbon matrix composites. Therefore, in this article, based on the cutting theory of fiber-reinforced polymer composites, an alternative thrust force prediction model for drilling of bidirectional carbon fiber–reinforced carbon matrix composites is proposed. The cutting force of the cutting lips is established by dividing the cutting deformation zone into three regions according to the machined material structure based on the Zhang’s model in cutting of fiber-reinforced polymer. The periodic variation of fiber orientation is considered in detail. The experimental results show that the relative deviations of the predicted and experimental values of the thrust force are less than 14.36%.
Funder
The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University
natural science foundation of shaanxi province
fundamental research funds for the central universities
national natural science foundation of china
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献