Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades

Author:

Ishijima Takashi1,Nakajima Kazuyuki1ORCID

Affiliation:

1. Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Glycan & Life Systems Integration Center, Soka University, Tokyo, Japan

Abstract

By using an animal model in which inflammatory cytokines are induced in lipopolysaccharide (LPS)-injected rat brain, we investigated the induction of tumor necrosis factor alpha (TNFα), interleukin-1beta (IL-1β), and IL-6. Immunoblotting and immunohistochemistry revealed that all three cytokines were transiently induced in the cerebral cortex at about 12 h after LPS injection. To clarify which glial cell type induced the cytokines, we examined the respective abilities of astrocytes and microglia in vitro. Primary microglia largely induced TNFα, IL-1β and IL-6 in response to LPS, but primary astrocytes induced only limited levels of TNFα. Thus, we used specific inhibitors to focus on microglia in surveying signaling molecules involved in the induction of TNFα, IL-1β, and IL-6. The experiments using mitogen-activated protein kinases (MAPK) inhibitors revealed that c-Jun N-terminal kinase (JNK)/p38, external signal regulated kinase (ERK)/JNK, and ERK/JNK/p38 are necessary for the induction of TNFα, IL-1β, and IL-6, respectively. The experiments using protein kinase C (PKC) inhibitor clarified that PKCα is required for the induction of all these cytokines in LPS-stimulated microglia. Furthermore, LPS-dependent IL-1β/IL-6 induction was suppressed by pretreatment with a nitric oxide (NO) scavenger, suggesting that NO is involved in the signaling cascade of IL-1β/IL-6 induction. Thus, an inducible NO synthase induced in the LPS-injected cerebral cortex might be related to the induction of IL-1β/IL-6 through the production of NO in vivo. Taken together, these results demonstrated that microglia induce different kinds of inflammatory cytokine through specific combinations of MAPKs and by the presence or absence of NO.

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3