New generalized class of estimators for estimation of finite population mean based on probability proportional to size sampling using two auxiliary variables: A simulation study

Author:

Ahmad Sohaib1ORCID,Shabbir Javid23,Zahid Erum4,Aamir Muhammad1,Alqawba Mohammed5

Affiliation:

1. Department of Statistics, Abdul Wali Khan University, Mardan, Pakistan

2. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

3. Department of Statistics, University of Wah, Wah Cantt, Pakistan

4. Department of Applied Mathematics and Statistics, Institute of Space Technology, Islamabad, Pakistan

5. Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia

Abstract

This article aims to suggest a new generalized class of estimators based on probability proportional to size sampling using two auxiliary variables. The numerical expressions for the bias and mean squared error (MSE) are derived up to the first order of approximation. Four actual data sets are used to examine the performances of a new improved generalized class of estimators. From the results of real data sets, it is examined that the suggested estimator gives the minimum MSE and the percentage relative efficiency is higher than all existing estimators, which shows the importance of the new generalized class of estimators. To check the strength and generalizability of our proposed class of estimators, a simulation study is also accompanied. The consequence of the simulation study shows the worth of newly found proposed class estimators. Overall, we get to the conclusion that the proposed estimator outperforms as compared to all other estimators taken into account in this study.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3