Seismic data reconstruction method using generative adversarial network based on moment reconstruction error constraint

Author:

Liu Bin1,Dong Xuguang1ORCID,Xu Leiliang1,Qin BoCheng2ORCID

Affiliation:

1. Sinopec Geophysical Corporation R&D Center, SINOPEC, Nanjing, China

2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China

Abstract

The seismic data acquired are usually spatially undersampled due to the constraints of the field acquisition environment. However, the removal of multiple waves, offsets, and inversions requires high regularity and integrity of seismic data. Therefore, reasonable data reconstruction methods are usually applied to the missing data in the indoor processing stage to recover regular seismic data. The traditional reconstruction methods for seismic data reconstruction are generally based on some assumptions (e.g., assuming that the data satisfies linearity or sparsity, etc.) and have some limitations of use. To overcome the applicability problem of traditional seismic data reconstruction methods, this article proposes a generative adversarial network (GAN) seismic data reconstruction method based on moment reconstruction error constraints. The method can extract the deep features of the data nonlinearly without any assumptions. First, the error function in the GAN is improved, and the commonly used joint error function of adversarial loss plus L1/L2 amplitude reconstruction loss is improved to a new error function consisting of adversarial loss and moment reconstruction loss weighting. Then, an adversarial network data reconstruction generation method based on the moment reconstruction error constraint is given. Next, an experimental analysis of different types of data missing was carried out using theoretical model data, and the study method was analyzed by interpolation errors. Finally, actual seismic data is used to further validate the effect of the research method. The experimental results show that the improved algorithm performs superiorly in dealing with the data reconstruction problem. Compared with the error function of conventional GAN optimization, the reconstruction results of GAN based on the moment reconstruction error constraint have better amplitude preservation.

Funder

the Central Government Funds of Guiding Local Scientific and Technological Development

the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3