Affiliation:
1. Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
Abstract
Establishing a functional nervous system is a complex process requiring tightly controlled gene expression programs to achieve the correct differentiation of distinct neuronal subtypes. The molecular programs required for neurons to acquire neuron-type-specific, and core pan-neuronal features mostly rely on sequence-specific transcription factors (TFs), which recognize and bind to cis-regulatory motifs present in the promoters of target genes. Recently, we investigated the role and mode of action of the NF-Y complex, a ubiquitously expressed transcriptional master regulator, in the Caenorhabditis elegans nervous system. We found that NFYA-1 is a pervasive regulator of neuron-specific and pan-neuronal gene batteries that are essential for neuronal development and function. Furthermore, we concluded that NFYA-1 acts cell autonomously by either directly binding to conserved motifs in target gene promoter regions or indirectly by regulating other transcriptional regulators to fine-tune gene expression. However, further studies are required to fully define the impact of the NF-Y complex on nervous system regulatory networks and how NF-Y coordinates with other TFs in this regard.