Reduction of Infarct Size by the Therapeutic Protein TAT-Ndi1 In Vivo

Author:

Mentzer Robert M.1234,Wider Joseph12,Perry Cynthia N.5,Gottlieb Roberta A.6

Affiliation:

1. Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA

2. Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA

3. Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA

4. The Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, USA

5. Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA

6. Cedars-Sinai Heart Institute, Los Angeles, CA, USA

Abstract

Lethal myocardial ischemia–reperfusion (I/R) injury has been attributed in part to mitochondrial respiratory dysfunction (including damage to complex I) and the resultant excessive production of reactive oxygen species. Recent evidence has shown that reduced nicotinamide adenine dinucleotide–quinone internal oxidoreductase (Ndi1; the single-subunit protein that in yeast serves the analogous function as complex I), transduced by addition of the TAT-conjugated protein to culture media and perfusion buffer, can preserve mitochondrial function and attenuate I/R injury in neonatal rat cardiomyocytes and Langendorff-perfused rat hearts. However, this novel metabolic strategy to salvage ischemic-reperfused myocardium has not been tested in vivo. In this study, TAT-conjugated Ndi1 and placebo-control protein were synthesized using a cell-free system. Mitochondrial uptake and functionality of TAT-Ndi1 were demonstrated in mitochondrial preparations from rat hearts after intraperitoneal administration of the protein. Rats were randomized to receive either TAT-Ndi1 or placebo protein, and 2 hours later all animals underwent 45-minute coronary artery occlusion followed by 2 hours of reperfusion. Infarct size was delineated by tetrazolium staining and normalized to the volume of at-risk myocardium, with all analysis conducted in a blinded manner. Risk region was comparable in the 2 cohorts. Preischemic administration of TAT-Ndi1 was profoundly cardioprotective. These results demonstrate that it is possible to target therapeutic proteins to the mitochondrial matrix and that yeast Ndi1 can substitute for complex I to ameliorate I/R injury in the heart. Moreover, these data suggest that cell-permeable delivery of mitochondrial proteins may provide a novel molecular strategy to treat mitochondrial dysfunction in patients.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3