Biomechanical Modeling of Connecting Intermetacarpal K-Wires in the Treatment of Metacarpal Shaft Fractures

Author:

Hutchison Richard L.1ORCID,Boles Justina2,Duan Yuanyuan2

Affiliation:

1. New College of Florida, Sarasota, FL, USA

2. University of Mississippi Medical Center, Jackson, MS, USA

Abstract

Background Clinical series have been published using the configuration of 2 intercarpal Kirschner wires (K-wires) adjacent to the fracture being connected, but biomechanical analysis is lacking. The objective of this pilot biomechanical study was to model and compare the effects of externally connecting 2 intermetacarpal K-wires for the stabilization of transverse metacarpal shaft fractures. Our research hypothesis was that the connected constructs would be stiffer than the unconnected K-wires. Methods A 3-dimensional computer-based model of small finger transverse metacarpal fracture stabilization was designed with 3 transverse 1.1 mm K-wires being anchored to the adjacent metacarpal. Three arrangements were tested: all 3 K-wires in parallel, the middle K-wire angled toward the proximal wire, and the middle angled K-wire being rigidly fixed to the proximal K-wire. The proximal wire was proximal to the fracture. A finite element analysis was performed by applying a cantilever force of 100 N at the head of the metacarpal. The metacarpal was considered to be uniform in composition with parameters typical for human bone. Kirschner wire parameters for stainless steel were used. Force (N) versus displacement was measured. Results The configuration with the middle angled K-wire being rigidly fixed to the proximal K-wire showed greater stiffness (12 N/mm) than nonattached constructs. The connected construct was 2.3 times more stiff than the unattached parallel construct and 2.5 times more stiff than angling the middle K-wire without attachment. Conclusions In a computer model simulation, our results show that attaching 2 K-wires adjacent to the fracture provides more than twice the stiffness of unconnected K-wires.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3