Dental Mitigation Strategies to Reduce Aerosolization of SARS-CoV-2

Author:

Vernon J.J.1,Black E.V.I.1ORCID,Dennis T.2ORCID,Devine D.A.1ORCID,Fletcher L.3,Wood D.J.1,Nattress B.R.4

Affiliation:

1. Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK

2. Leeds Dental Institute, Leeds Teaching Hospitals Trust, Leeds, UK

3. School of Civil Engineering, University of Leeds, Leeds, UK

4. Division of Restorative Dentistry, School of Dentistry, University of Leeds, Leeds, UK

Abstract

Limiting infection transmission is central to the safety of all in dentistry, particularly during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Aerosol-generating procedures (AGPs) are crucial to the practice of dentistry; it is imperative to understand the inherent risks of viral dispersion associated with AGPs and the efficacy of available mitigation strategies. In a dental surgery setting, crown preparation and root canal access procedures were performed with an air turbine or high-speed contra-angle handpiece (HSCAH), with mitigation via rubber dam or high-volume aspiration and a no-mitigation control. A phantom head was used with a 1.5-mL min−1 flow of artificial saliva infected with Φ6-bacteriophage (a surrogate virus for SARS-CoV-2) at ~108 plaque-forming units mL−1, reflecting the upper limits of reported salivary SARS-CoV-2 levels. Bioaerosol dispersal was measured using agar settle plates lawned with the Φ6-bacteriophage host, Pseudomonas syringae. Viral air concentrations were assessed using MicroBio MB2 air sampling and particle quantities using Kanomax 3889 GEOα counters. Compared to an air turbine, the HSCAH reduced settled bioaerosols by 99.72%, 100.00%, and 100.00% for no mitigation, aspiration, and rubber dam, respectively. Bacteriophage concentrations in the air were reduced by 99.98%, 100.00%, and 100.00% with the same mitigations. Use of the HSCAH with high-volume aspiration resulted in no detectable bacteriophage, both on nonsplatter settle plates and in air samples taken 6 to 10 min postprocedure. To our knowledge, this study is the first to report the aerosolization in a dental clinic of active virus as a marker for risk determination. While this model represents a worst-case scenario for possible SARS-CoV-2 dispersal, these data showed that the use of HSCAHs can vastly reduce the risk of viral aerosolization and therefore remove the need for clinic fallow time. Furthermore, our findings indicate that the use of particle analysis alone cannot provide sufficient insight to understand bioaerosol infection risk.

Funder

British Endodontic Society

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-volume evacuation mitigates viral aerosol spread in dental procedures;Scientific Reports;2023-11-03

2. Incidence of Acute Respiratory Infections in Dental Care Professionals;ЗДОРОВЬЕ НАСЕЛЕНИЯ И СРЕДА ОБИТАНИЯ - ЗНиСО / PUBLIC HEALTH AND LIFE ENVIRONMENT;2023-10

3. Simulation of acute respiratory viral infections pathogen spread in dentists;Fundamental and Clinical Medicine;2023-06-30

4. Quantifying strategies to minimize aerosol dispersion in dental clinics;Experimental and Computational Multiphase Flow;2023-03-28

5. Evaluation of aerosols in a simulated orthodontic debanding procedure;Scientific Reports;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3