Microstructural, Micromechanical Atlas of the Temporomandibular Joint Disc

Author:

Jiang N.1,Tan P.1,Sun Y.1,Zhou J.1,Ren R.1,Li Z.2,Zhu S.1

Affiliation:

1. State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

2. Ao Research Institute Davos, Davos, Graubünden, Switzerland

Abstract

The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc. First, the naive microstructure and mechanical properties were investigated in porcine TMJ discs (resting and functional conditions). Subsequently, the perforation and tear models (pathological conditions) were compared. Following this, a rabbit model of anterior disc displacement (abnormal stress) was studied. Results show diverse microstructures and mechanical properties at the nanometer to micrometer scale. In the functional state, gradual unfolding of the crimping cycle in secondary and tertiary structures leads to D-cycle prolongation in the primary structure, causing tissue failure. Pathological conditions lead to stress concentration near the injury site due to collagen interfibrillar traffic patterns, resulting in earlier damage manifestation. Additionally, the abnormal stress model shows collagen damage initiating at the primary structure and extending to the superstructure over time. These findings highlight collagen’s various roles in different pathophysiological states. Our study offers valuable insights into TMJ disc function and dysfunction, aiding the development of diagnostic and therapeutic strategies for TMJ disorders, as well as providing guidance for the design of structural biomimetic materials.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3