Activated Epithelial FGF8 Signaling Induces Fused Supernumerary Incisors

Author:

Chen Y.12,Wang Z.1,Lin C.1,Chen Y.3,Hu X.1,Zhang Y.1

Affiliation:

1. Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China

2. The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian, China

3. Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA

Abstract

FGF8, which is specifically expressed in the dental epithelium prior to the E12.5 bud stage, is a key player during odontogenesis, being responsible for the initiation of tooth development. Here, to investigate the impact of persistent FGF8 signaling on tooth development, we forcibly activated FGF8 signaling in the dental epithelium after the bud stage by generating K14-Cre;R26R-Fg8 mice. We found that a unique type of fused supernumerary incisors is formed, although morphologically resembling the features of type II dens invaginatus in humans. Further analysis revealed that ectopically activated epithelial FGF8 alters the cell fate of the incisor lingual outer enamel epithelium, endowing it with odontogenic potential by the activation of several key tooth genes, including Pitx2, Sox2, Lef-1, p38, and Erk1/2, and induces de novo formation of an extra incisor crown lingually in parallel to the original one, leading to the formation of an extra incisor crown and fused with the original incisor eventually. Meanwhile, the overdosed epithelial FGF8 signaling dramatically downregulates the expression of mesenchymal Bmp4, leading to severely impaired enamel mineralization. Based on the location of the extra incisors, we propose that they are likely to be rescued replacement teeth. Our results further demonstrate the essential role of FGF8 signaling for tooth initiation and the establishment of progenitor cells of dental epithelial stem cells during development.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3