Occlusal Force Maintains Alveolar Bone Homeostasis via Type H Angiogenesis

Author:

Chen Y.12,Yin Y.1ORCID,Luo M.1,Wu J.1,Chen A.1,Deng L.1,Xie L.1,Han X.1

Affiliation:

1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

2. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China

Abstract

Physiologically, teeth and periodontal tissues are exposed to occlusal forces throughout their lifetime. Following occlusal unloading, unbalanced bone remodeling manifests as a net alveolar bone (AB) loss. This phenomenon is termed alveolar bone disuse osteoporosis (ABDO), the underlying mechanism of which remains unclear. Type H vessels, a novel capillary subtype tightly coupled with osteogenesis, reportedly have a role in skeletal remodeling; however, their role in ABDO is not well studied. In the present study, we aimed to explore the pathogenesis of and therapies for ABDO. The study revealed that type H endothelium highly positive for CD31 and endomucin was identified in the periodontal ligament (PDL) but rarely in the AB of the mice. In hypofunctional PDL, the density of type H vasculature and coupled osterix+ (OSX+) osteoprogenitors declined significantly. In addition, the angiogenic factor Slit guidance ligand 3 (SLIT3) was downregulated in the disused PDL, and periodontal injection of the recombinant SLIT3 protein partially ameliorated type H vessel dysfunction and AB loss in ABDO mice. With regard to the molecular mechanism, a mechanosensory signaling circuit, PIEZO1/Ca2+/HIF-1α/SLIT3, was validated by applying cyclic compression to 3-dimensional–cultured PDL cells using the Flexcell FX-5000 compression system. In summary, PDL plays a pivotal role in mechanotransduction by translating physical forces into the intracellular signaling axis PIEZO1/Ca2+/HIF-1α/SLIT3, which promotes type H angiogenesis and OSX+ cell–related osteogenensis, thereby contributing to AB homeostasis. Our findings advance the understanding of PDL in AB disorders. Further therapies targeting SLIT3 may provide new insights into preventing bone loss in ABDO.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3