Early and Long-term Wear of Conventional and Resin-modified Glass Ionomers

Author:

de Gee A.J.1,van Duinen R.N.B.2,Werner A.1,Davidson C.L.1

Affiliation:

1. Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Louwesweg 1, 1066 EA Amsterdam, The Netherlands

2. Department of Cariology and Endodontology, Academic Centre for Dentistry Amsterdam (ACTA), Louwesweg 1, 1066 EA Amsterdam, The Netherlands

Abstract

Various studies have shown that glass ionomers are susceptible to brittle fracture and acid conditions and that they undergo long-term changes in their mechanical properties. Little information is available on how brittleness, acid susceptibility, and long-term changes are reflected in the wear characteristics of glass ionomers. The purpose of this study was to evaluate long-term changes in conventional glass ionomers, metal-reinforced glass ionomers (including a cermet), and (light-curing) resin-modified glass ionomers by wear experiments simulating the wear process in occlusal contact-free areas. The wear tests were conducted periodically over a period of one year. In addition, wear was determined after one year at a pH of 5 or 6, for assessment of acid susceptibility, and at a condition as found in the occlusal contact areas. All materials showed high early-wear rates which decreased significantly during the one-year test period. This long-term process may be related to a slow progression of the acid-base reaction extending over several months. At each stage, the resin-modified glass ionomers wore significantly faster than the acid-base setting glass ionomers. Most of these materials were not affected at a pH of 6.0, while at a pH of 5.0 only the conventional and the metal-reinforced glass ionomers showed increased wear. Direct contacts with the antagonist led to a significant increase in wear in comparison with contact-free wear, probably as a result of sub-surface fatigue phenomena. In view of the unfavorable wear characteristics of the resin-modified glass ionomers and the high early wear of the conventional glass ionomers, including the metal-reinforced glass ionomers, it was concluded that none of these materials can yet be recommended for use in high-stress-bearing situations.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3