High Resolution Electron Microscopy: Structure and Growth Mechanisms of Human Dentin Crystals

Author:

Houllé P.1,Voegel J.C.1,Schultz P.2,Steuer P.1,Cuisinier F.J.G.1

Affiliation:

1. Centre de Recherches Odontologiques, INSERM Unite 424, 1, Place de l'Hopital, 67000 Strasbourg, France

2. Institut de Génétique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/ULP, 1, rue Laurent Fries, 67404 Illkirch, France

Abstract

Biological crystal formation was postulated to begin by a nucleation process. Such processes have been demonstrated for human amelogenesis and bone mineralization. The aim of this study was to confirm if such mechanisms occur during dentin crystal formation. The structure of human fetal dentin crystals and the earliest stages of mineral growth were followed by High Resolution Electron Microscopy (HREM) associated with digitalized image analysis. Micrographs of the mineralization front were first digitalized, and selected areas were transformed in the reciprocal space by Fast Fourier Transform. The resulting diffractograms were compared with computer-simulated diffractograms and used to determine the orientation of crystals. Dentin crystals, found close to the mineralization front, show a structure closely related to that of hydroxyapatite (HA), as determined by comparison of HREM images with simulated images. These crystals present numerous structural defects such as dislocations and grain boundaries. These defects appear to be present in dentin crystals at an early stage of growth. We have also observed nanometer-sized particles in mineralization areas. Calculated diffractograms of these areas show significant similarities with HA diffraction patterns, and in one case, their structure could be correlated to HA structure through an image simulation process. These nanometer-sized particles could be related to the nucleation process, and their growth, orientation, and formation appear to be mediated by extracellular matrix components.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3