Calcium Signaling in T Cells and Chronic Inflammatory Disorders of the Oral Cavity

Author:

Hasiakos S.12,Gwack Y.2,Kang M.3,Nishimura I.14

Affiliation:

1. Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA

2. Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

3. Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA

4. Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA

Abstract

Acute immune responses to microbial insults in the oral cavity often progress to chronic inflammatory diseases such as periodontitis and apical periodontitis. Chronic oral inflammation causes destruction of the periodontium, potentially leading to loss of the dentition. Previous investigations have demonstrated that the composition of oral immune cells, rather than the overall extent of cellular infiltration, determines the pathological development of chronic inflammation. The role of T lymphocyte populations, including Th1, Th2, Th17, and Treg cells, has been extensively described. Studies now propose pathogenic Th17 cells as a distinct subset, uniquely classifiable from traditional Th17 populations. In situ differentiation of pathogenic Th17 cells has been verified as a source of destructive inflammation, which critically drives pathogenesis in chronic inflammatory diseases such as diabetes, rheumatoid arthritis, and inflammatory bowel disease. Pathogenic Th17 cells resemble a Th1 penotype and produce not only interleukin 17 (IL-17) but also γ-interferon (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The proinflammatory cytokine-specific mechanisms known to induce IL-17 expression in Th17 cells are well characterized; however, differentiation mechanisms that lead to pathogenic Th17 cells are less understood. Recently, Ca2+ signaling through Ca2+ release-activated Ca2+ channels (CRAC) in T cells has been uncovered as a major signaling axis involved in the regulation of T-cell-mediated chronic inflammation. In particular, pathogenic Th17 cell–mediated immunological diseases appear to be effectively targeted via such Ca2+ signaling pathways. Pathogenic plasticity of Th17 cells has been extensively illustrated in autoimmune and chronic inflammatory diseases. Although their specific causal relationship to oral infection-induced chronic inflammatory diseases is not fully established, pathogenic Th17 cells may be involved in the underlining mechanism. This review highlights the current understanding of T-cell phenotype regulation, calcium signaling pathways in this event, and the potential role of pathogenic Th17 cells in chronic inflammatory disorders of the oral cavity.

Funder

National Institute of Dental and Craniofacial Research

National Institute of Allergy and Infectious Diseases

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3