Swallowing-related Perihypoglossal Neurons Projecting to Hypoglossal Motoneurons in the Cat

Author:

Ono T.1,Ishiwata Y.1,Kuroda T.1,Nakamura Y.2

Affiliation:

1. Second Department of Orthodontics

2. Department of Physiology, Faculty of Dentistry, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 113, Japan

Abstract

Although previous studies have examined the functional role of the neurons in the area ventrolateral to the hypoglossal nucleus (perihypoglossal neurons) in the trigemino-hypoglossal reflex, no convincing evidence for the direct connection from the perihypoglossal neurons to the hypoglossal motoneurons has yet been provided. In addition, the role of the perihypoglossal neurons in swallowing has not been studied. The purpose of this study was to investigate (1) the input-output relationship of the perihypoglossal neurons and (2) whether the afferent feedback was essential for their swallowing-related activity in chloralose-anesthetized cats. Before and after the cats were paralyzed, single-unit activities were recorded extracellularly from 30 perihypoglossal neurons during swallowing elicited by electrical stimulation of the superior laryngeal nerve. These perihypoglossal neurons responded with spike potentials after short latencies to stimulation of the inferior alveolar and hypoglossal nerves. The neurons also responded with spike potentials to single shocks applied to the superior laryngeal nerve, but were activated transiently at the initial phase of repetitive stimulation of the nerve and kept silent until the occurrence of swallowing before and after the animal was paralyzed. They showed burst activities in coincidence with swallowing. Averaging of intracellular potentials of a hypoglossal motoneuron by simultaneously recorded extracellular spikes of a perihypoglossal neuron revealed monosynaptic inhibitory post-synaptic potentials. We conclude that, in the region ventrolateral to the hypoglossal nucleus, there are neurons which relay trigeminal, hypoglossal, and vagal afferents. Furthermore, some of these perihypoglossal neurons are inhibitory hypoglossal premotor neurons that are involved in the central programming of swallowing.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3