Mammalian Target of Rapamycin in Inflammatory Skin Conditions

Author:

Balato A.1,Di Caprio R.1,Lembo S.1,Mattii M.1,Megna M.1,Schiattarella M.1,Tarantino G.2,Balato N.1,Ayala F.1,Monfrecola G.1

Affiliation:

1. Department of Dermatology, University of Naples Federico II, Naples, Italy

2. Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy

Abstract

The conserved serine/threonine kinase mammalian target of rapamycin (mTOR) is a major regulator of survival growth, proliferation and motility, in response to mitogens, energy and nutrient levels. Dysregulation of mTOR pathway has been observed in various inflammatory or neoplastic human diseases. To assess the potential involvement of mTOR in some of the most common inflammatory skin diseases, and its interaction with other inflammatory mediators, we investigated mTOR expression in psoriasis, allergic contact dermatitis (ACD) and atopic dermatitis (AD). mTOR gene expression was assessed in the following conditions: i) skin biopsies from 15 patients affected by psoriasis, 5 patients with ACD, 5 patients with AD and 3 patients with EGFR-inhibitor-induced skin rash; ii) in immortalized keratinocytes HaCaT, primary human keratinocytes (KCs) and full thickness skin organ cultures, incubated with tumor necrosis factor (TNF)-α, interleukin (IL) 17A or their combination; iii) in HaCaT cells stimulated with ultraviolet (UV)B; iv) in skin biopsies from 5 psoriatic patients before and after 16 weeks of anti-TNF-α therapy; mTOR expression was also evaluated through immunohistochemistry in lesional and non-lesional skin samples from 5 psoriatic patients. Moreover, mTOR major up-stream and down-stream regulator gene expression was assessed in skin biopsies from 15 patients affected by psoriasis, 5 patients with ACD, 5 patients with AD and 3 patients with EGFR-inhibitor-induced skin rash. All analyzed skin diseases showed an increase of mTOR gene expression whereas mTOR up-stream negative regulators were reduced or not enhanced in all of them. mTOR was strongly expressed in all epidermal layers of lesional and non-lesional psoriatic skin. Conversely, pro-inflammatory conditions, in vitro, were not able to increase mTOR levels, except for UVB. Similarly, anti-TNF-α therapy was not able to reduce mTOR gene expression in patients with psoriasis. Our study provides evidence that mTOR is involved in cutaneous inflammatory process, but through a signalling not directly dependent from Th1-Th17 pathway.

Publisher

SAGE Publications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3