Porcine Tracheal Mucosa-Derived Decellularized Patch to Prevent Septal Perforation in a Rabbit Model

Author:

Kim So Jeong1ORCID,Jung Soo Yeon1,Lee Min Ji2,Bae Jung Ho3,Kim Han Su1

Affiliation:

1. Department of Otorhinolaryngology – Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Korea

2. Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea

3. Department of Otorhinolaryngology – Head and Neck Surgery, Ewha Womans University Seoul hospital, Gangseo-gu, Seoul, Republic of Korea

Abstract

Background Nasal septal perforation is caused by bilateral septal mucosal injuries resulting from nasal trauma and septal surgeries. Previous studies have reported that biocompatible materials may be effective for repairing nasal septal perforations. However, they were primarily used for treatment; no study has investigated their use for prevention of nasal septal perforation. Objective To determine whether porcine tracheal mucosa-derived decellularized patch can prevent the progression of nasal mucosa injuries to septal perforations. Methods Bilateral nasal septal mucosal defects were surgically induced in 36 rabbits. Silastic sheets were applied bilaterally in all rabbits, and decellularized mucosal patch was applied unilaterally (n = 12) or bilaterally (n = 12) at the defect site in the respective experimental groups. Between 1 and 8 weeks postoperatively, the animals were sacrificed, and their nasal septa were completely removed. The excised septa were examined macroscopically and microscopically (histopathological examinations). Moreover, glycosaminoglycan (GAG) estimations of the septa were performed to evaluate mucosal regeneration and mechanical properties. Results Septal perforations occurred in 5 animals in the control group (5/12; 42%), 1 in the unilateral group (1/12; 9%), and in none in the bilateral group. Compared with the control group, the experimental groups showed significantly different mucosal and cartilage regeneration. Conclusion Decellularized porcine tracheal mucosa can prevent mucosal defects from progressing to septal perforation, promote the repair of mucosal defects, and protect the nasal cartilage.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3