Biomechanical Evaluation of Mini-Fragment Hardware for Supination External Rotation Fractures of the Distal Fibula

Author:

Bariteau Jason T.12,Blankenhorn Brad D.12,Lareau Craig R.12,Paller David J.12,DiGiovanni Christopher W.12

Affiliation:

1. Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island (JTB, CRL, DJP, CWD)

2. Department of Orthopaedics, University of Utah, Salt Lake City, Utah (BDB)

Abstract

Background. Supination external rotation distal fibula fractures are common, requiring fixation when associated with talar displacement. Subcutaneous distal fibula hardware may become painful, necessitating operative removal. We hypothesize that mini-fragment and small-fragment constructs will demonstrate similar biomechanical stability. Methods. A biomechanical comparison was performed in synthetic osteoporotic sawbones. The first arm compared two 2.4-mm lag screws with one 3.5-mm lag screw for fixation of a simulated supination external rotation distal fibula fracture. The second arm compared a 2.4-mm plate-screw construct with a 3.5-mm lag screw and one-third tubular neutralization plate. During torsional testing, torque and displacement were recorded, and stiffness and peak torque were determined. Results. Differences in mean stiffness and mean load at failure were not statistically significant with lag screw–only fixation. The 3.5-mm plate-screw construct outperformed the 2.4-mm plate-screw construct, but neither mean stiffness nor mean load at failure were statistically significantly different. Dynamic testing also demonstrated similar results. Conclusion. Our data suggest that isolated 2.4-mm screws function similarly to one 3.5-mm screw. Although the 3.5-mm plate-screw construct was stiffer, mean load at failure was equivalent for the 2 constructs. These data provide biomechanical evidence to support further investigation in the use of mini-fragment hardware for distal fibula fracture fixation. Levels of Evidence: Therapeutic, Level V

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Podiatry,Surgery

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3