A work done approach on analyzing the effects of densification parameters on tapered screw extruders

Author:

Tadese Addisu Kidanemariam1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Mechanical design, Jimma Institute of technology, Jimma, Ethiopia

Abstract

Densification is the process of compacting bulk material to increase its physical and energy density. One way of densification is by using screw extruders. Yet, sufficient theoretical studies have not been carried out on the densification parameters for a tapered screw. In this study, a mathematical model for investigating the effect of the operational parameters on a tapered screw has been studied by analyzing the work balance on the plug along the tapered screw channel. By using the taper angle, screw pitch, and barrel friction coefficients as control variables, a mathematical model for the pressure gradient, volumetric throughput, and output density was established. The velocity profile of the plug along the screw channel was measured to determine the volumetric throughput. The final model for the pressure gradient along the axial length of the screw has been approximated by Runge-Kutta fourth order approximation model in the python programing environment. From the results, an increase in screw length, screw taper angle, and barrel friction coefficient has been attributed to an increase in compaction pressure. This parameter has also changed for a [Formula: see text] tapper angle, which is primarily due to centrifugal, gravity, and frictional forces acting on the plug. Further investigation into the volumetric throughput and output density has the same effect. According to the analysis, the optimum taper angle has been identified to be between [Formula: see text] and [Formula: see text], which yields the optimum output density without compromising the combustion property of the compacted biomass.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3