Influence of energy density on the microstructure and property regulation of additive manufactured pure nickel

Author:

Li Cong1,Zhang Quanquan1ORCID,Ren Yanjie1,Chen Wei1,Li Wei1,Chen Jian1,Zhou Libo1

Affiliation:

1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, China

Abstract

In this work, laser powder bed fusion (LPBF) technology was used to fabricate pure nickel components, and the densification behavior and microstructure of pure nickel with different energy densities were investigated. The results indicate that for LPBF-fabricated pure nickel components, the relative density reaches a peak of 98.76% at an energy density of 101 J/mm3. With the increase of energy density, a large number of pores appear inside the grains, and the grains grow epitaxially along the building direction within multiple molten pools, pores gradually disappear after undergoing remelting at the edges of the melting tracks. Among these, competitive inward growth of columnar crystals may be the main cause of dislocations and new grain generation. The grains are primarily distributed along the Ni (111) or Ni (110) orientations, and with the increase of energy density, the grains with these two orientations increase. The surface energy follows the sequence of Ni (220) > Ni (200) > Ni (111). Due to the stacking of the <101> oriented main layer and the <001> oriented sub-layer in the building direction, the sample with higher energy density exhibits a strong Ni {110} texture, accompanied by increased tensile properties.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3